

Connection Diagrams

Pin Assignment for FBGA

(Top Thru View)

Pin Descriptions

Pin Names	Description
$\overline{O E}_{n}$	Output Enable Input (Active LOW)
T / \bar{R}_{n}	Transmit/Receive Input
$A_{0}-A_{15}$	Side A Inputs or 3-STATE Outputs
$B_{0}-B_{15}$	Side B Inputs or 3-STATE Outputs
$N C$	No Connect

FBGA Pin Assignments

	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$
\mathbf{A}	B_{0}	NC	$\mathrm{T} / \overline{\mathrm{R}}_{1}$	$\overline{\mathrm{OE}}_{1}$	NC	A_{0}
\mathbf{B}	$\mathrm{~B}_{2}$	$\mathrm{~B}_{1}$	NC	NC	A_{1}	$\mathrm{~A}_{2}$
\mathbf{C}	$\mathrm{~B}_{4}$	$\mathrm{~B}_{3}$	$\mathrm{~V}_{\mathrm{CCB}}$	$\mathrm{V}_{\mathrm{CCA}}$	A_{3}	$\mathrm{~A}_{4}$
\mathbf{D}	$\mathrm{~B}_{6}$	$\mathrm{~B}_{5}$	GND	GND	A_{5}	$\mathrm{~A}_{6}$
\mathbf{E}	$\mathrm{~B}_{8}$	$\mathrm{~B}_{7}$	GND	GND	A_{7}	$\mathrm{~A}_{8}$
\mathbf{F}	$\mathrm{~B}_{10}$	$\mathrm{~B}_{9}$	GND	GND	A_{9}	$\mathrm{~A}_{10}$
\mathbf{G}	$\mathrm{~B}_{12}$	$\mathrm{~B}_{11}$	$\mathrm{~V}_{\mathrm{CCB}}$	$\mathrm{V}_{\mathrm{CCA}}$	A_{11}	$\mathrm{~A}_{12}$
\mathbf{H}	$\mathrm{~B}_{14}$	$\mathrm{~B}_{13}$	NC	NC	A_{13}	$\mathrm{~A}_{14}$
\mathbf{J}	$\mathrm{~B}_{15}$	NC	$\mathrm{T} / \overline{\mathrm{R}}_{2}$	$\overline{\mathrm{OE}}_{2}$	NC	A_{15}

Truth Tables

Inputs		Outputs
$\overline{\mathrm{OE}}_{\mathbf{1}}$	$\mathrm{T} / \overline{\mathbf{R}}_{\mathbf{1}}$	
L	L	Bus $\mathrm{B}_{0}-\mathrm{B}_{7}$ Data to Bus $\mathrm{A}_{0}-\mathrm{A}_{7}$
L	H	Bus $\mathrm{A}_{0}-\mathrm{A}_{7}$ Data to Bus $\mathrm{B}_{0}-\mathrm{B}_{7}$
H	X	HIGH Z State on $\mathrm{A}_{0}-\mathrm{A}_{7}, \mathrm{~B}_{0}-\mathrm{B}_{7}$

Inputs		Outputs
$\overline{\mathrm{OE}}_{\mathbf{2}}$	$\mathrm{T} / \overline{\mathrm{R}}_{\mathbf{2}}$	
L	L	Bus $\mathrm{B}_{8}-\mathrm{B}_{15}$ Data to Bus $\mathrm{A}_{8}-\mathrm{A}_{15}$
L	H	Bus $\mathrm{A}_{8}-\mathrm{A}_{15}$ Data to Bus $\mathrm{B}_{8}-\mathrm{B}_{15}$
H	X	HIGH-Z State on $\mathrm{A}_{8}-\mathrm{A}_{15}, \mathrm{~B}_{8}-\mathrm{B}_{15}$

$\mathrm{H}=\mathrm{HIGH}$ Voltage Leve
= LOW Voltage Leve
X = Immaterial (HIGH or LOW, inputs may not float)
$\mathrm{Z}=$ High Impedance

Translator Power Up Sequence Recommendations

To guard against power up problems, some simple guidelines need to be adhered to. The VCX164245 is designed so that the control pins ($\mathrm{T} / \overline{\mathrm{R}}_{\mathrm{n}}, \overline{\mathrm{OE}}_{\mathrm{n}}$) are supplied by $\mathrm{V}_{\mathrm{CCB}}$. Therefore the first recommendation is to begin by powering up the control side of the device, $\mathrm{V}_{\mathrm{CCB}}$. The OE_{n} control pins should be ramped with or ahead of $\mathrm{V}_{\mathrm{CCB}}$, this will guard against bus contentions and oscillations as all A Port and B Port outputs will be disabled. To ensure the high impedance state during power up or power down, $\overline{\mathrm{OE}}_{\mathrm{n}}$ should be tied to $\mathrm{V}_{\mathrm{CCB}}$ through a pull up resistor. The minimum value of the resistor is determined by the current
sourcing capability of the driver. Second, the T / \bar{R}_{n} control pins should be placed at logic low (OV) level, this will ensure that the B -side bus pins are configured as inputs to help guard against bus contention and oscillations. B-side Data Inputs should be driven to a valid logic level (OV or $\mathrm{V}_{\mathrm{CCB}}$), this will prevent excessive current draw and oscillations. $\mathrm{V}_{\text {CCA }}$ can then be powered up after $\mathrm{V}_{\mathrm{CCB}}$, but should never exceed the $\mathrm{V}_{\mathrm{CCB}}$ voltage level. Upon completion of these steps the device can then be configured for the users desired operation. Following these steps will help to prevent possible damage to the translator device as well as other system components.

DC E Symbol	Parameter		Conditions	$\begin{gathered} \mathrm{V}_{\mathrm{CCA}} \\ \text { (V) } \end{gathered}$	$\mathrm{V}_{\mathrm{CCB}}$ (V)	Min	Max	Units
$\overline{\mathrm{V}_{\mathrm{IHA}}}$	HIGH Level Input Voltage	A_{n}		1.65-1.95	3.0-3.6	$0.65 \times \mathrm{V}_{\text {cc }}$		V
		$\mathrm{B}_{\mathrm{n}}, \mathrm{T} / \overline{\mathrm{R}}, \overline{\mathrm{OE}}$		1.65-1.95	3.0-3.6	2.0		V
$\begin{aligned} & \hline \mathrm{V}_{\mathrm{ILA}} \\ & \mathrm{~V}_{\mathrm{ILB}} \end{aligned}$	LOW Level Input Voltage	A_{n}		1.65-1.95	3.0-3.6		$0.35 \times \mathrm{V}_{\mathrm{CC}}$	V
		$B_{n}, T / \bar{R}, \overline{O E}$		1.65-1.95	3.0-3.6		0.8	V
$\mathrm{V}_{\text {OHA }}$	HIGH Level Output Voltage		$\begin{aligned} & \mathrm{I}_{\mathrm{OH}}=-100 \mu \mathrm{~A} \\ & \mathrm{I}_{\mathrm{OH}}=-6 \mathrm{~mA} \end{aligned}$	$\begin{array}{\|c\|} \hline 1.65-1.95 \\ 1.65 \\ \hline \end{array}$	$\begin{aligned} & \hline 3.0-3.6 \\ & 3.0-3.6 \end{aligned}$	$\begin{gathered} \hline \mathrm{V}_{\mathrm{CCA}}-0.2 \\ 1.25 \end{gathered}$		V
$\mathrm{V}_{\text {OHB }}$	HIGH Level Output Voltage		$\begin{aligned} & \mathrm{I}_{\mathrm{OH}}=-100 \mu \mathrm{~A} \\ & \mathrm{I}_{\mathrm{OH}}=-24 \mathrm{~mA} \end{aligned}$	$\begin{array}{\|l\|} \hline 1.65-1.95 \\ 1.65-1.95 \\ \hline \end{array}$	$\begin{gathered} 3.0-3.6 \\ 3.0 \end{gathered}$	$\begin{gathered} \mathrm{V}_{\mathrm{CCA}}-0.2 \\ 2.2 \end{gathered}$		V
$\mathrm{V}_{\text {OLA }}$	LOW Level Output Voltage		$\begin{aligned} & \mathrm{I}_{\mathrm{OL}}=100 \mu \mathrm{~A} \\ & \mathrm{I}_{\mathrm{OL}}=6 \mathrm{~mA} \end{aligned}$	$\begin{array}{\|c\|} \hline 1.65-1.95 \\ 1.65 \\ \hline \end{array}$	$\begin{aligned} & 3.0-3.6 \\ & 3.0-3.6 \end{aligned}$		$\begin{aligned} & 0.2 \\ & 0.3 \\ & \hline \end{aligned}$	V
$\mathrm{V}_{\text {OLB }}$	LOW Level Output Voltage		$\begin{aligned} & \mathrm{l} \mathrm{OL}=100 \mu \mathrm{~A} \\ & \mathrm{I}_{\mathrm{OL}}=24 \mathrm{~mA} \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline 1.65-1.95 \\ 1.65-1.95 \\ \hline \end{array}$	$\begin{gathered} \hline 3.0-3.6 \\ 3.0 \end{gathered}$		$\begin{gathered} \hline 0.2 \\ 0.55 \\ \hline \end{gathered}$	V
I	Input Leakage Current @ $\overline{\mathrm{OE}}, \mathrm{T} / \overline{\mathrm{R}}$		$\mathrm{OV} \leq \mathrm{V}_{1} \leq 3.6 \mathrm{~V}$	1.65-1.95	3.0-3.6		± 5.0	$\mu \mathrm{A}$
$\mathrm{I}_{\text {Oz }}$	3-STATE Output Leakage		$\begin{aligned} & 0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{O}} \leq 3.6 \mathrm{~V} \\ & \mathrm{OE}^{*}=\mathrm{V}_{\mathrm{CCB}} \\ & \mathrm{~V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} \end{aligned}$	1.65-1.95	3.0-3.6		± 10	$\mu \mathrm{A}$
IofF	Power Off Leak	Current	$0 \leq\left(\mathrm{V}_{\mathrm{l}}, \mathrm{V}_{\mathrm{O}}\right) \leq 3.6 \mathrm{~V}$	0	0		10	$\mu \mathrm{A}$
$\overline{l c C A} / l_{\text {CCB }}$	Quiescent Supply Current, per supply, $\mathrm{V}_{\mathrm{CCA}} / \mathrm{V}_{\mathrm{CCB}}$		$\begin{aligned} & A_{n}=V_{C C A} \text { or GND } \\ & B_{n}, \overline{O E}, \& T / \bar{R}=V_{C C B} \text { or } G N D \end{aligned}$	1.65-1.95	3.0-3.6		20	$\mu \mathrm{A}$
			$\begin{aligned} & \mathrm{V}_{\mathrm{CCA}} \leq \mathrm{A}_{\mathrm{n}} \leq 3.6 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CCB}} \leq \mathrm{B}_{\mathrm{n}}, \overline{\mathrm{OE}, \mathrm{~T} / \overline{\mathrm{R}} \leq 3.6 \mathrm{~V}} \\ & \hline \end{aligned}$	1.65-1.95	3.0-3.6		± 20	$\mu \mathrm{A}$
Δl_{CC}	Increase in $I_{C C}$ per Input, $B_{n}, T / \bar{R}, \overline{O E}$ Increase in I_{CC} per Input, A_{n}		$\mathrm{V}_{1}=\mathrm{V}_{\text {CCB }}-0.6 \mathrm{~V}$	1.65-1.95	3.0-3.6		750	$\mu \mathrm{A}$
			$\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\text {CCA }}-0.6 \mathrm{~V}$	1.65-1.95	3.0-3.6		750	$\mu \mathrm{A}$

DC Electrical Characteristics (2.3V $<\mathrm{V}_{\mathrm{CCA}} \leq 2.7 \mathrm{~V}, 3.0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CCB}} \leq 3.6 \mathrm{~V}$)

Symbol	Parameter		Conditions	$\mathrm{V}_{\text {CCA }}$ (V)	$\mathrm{V}_{\mathrm{CCB}}$ (V)	Min	Max	Units
$\begin{aligned} & \hline \mathrm{V}_{\mathrm{IHA}} \\ & \mathrm{~V}_{\mathrm{IHB}} \end{aligned}$	HIGH Level Input Voltage	A_{n}		2.3-2.7	3.0-3.6	1.6		V
		$B_{n}, T / \bar{R}, \overline{O E}$		2.3-2.7	3.0-3.6	2.0		V
$\begin{aligned} & \hline \mathrm{V}_{\text {ILA }} \\ & \mathrm{V}_{\text {ILB }} \end{aligned}$	LOW Level Input Voltage	A_{n}		2.3-2.7	3.0-3.6		0.7	V
		$B_{n}, T / \bar{R}, \overline{O E}$		2.3-2.7	3.0-3.6		0.8	V
$\mathrm{V}_{\text {OHA }}$	HIGH Level Output Voltage		$\begin{aligned} & \mathrm{I}_{\mathrm{OH}}=-100 \mu \mathrm{~A} \\ & \mathrm{I}_{\mathrm{OH}}=-18 \mathrm{~mA} \end{aligned}$	$\begin{gathered} \hline 2.3-2.7 \\ 2.3 \end{gathered}$	$\begin{aligned} & \hline 3.0-3.6 \\ & 3.0-3.6 \end{aligned}$	$\begin{gathered} \mathrm{V}_{\mathrm{CCA}}-0.2 \\ 1.7 \end{gathered}$		V
$\mathrm{V}_{\text {OHB }}$	HIGH Level Output Voltage		$\begin{aligned} & \mathrm{I}_{\mathrm{OH}}=-100 \mu \mathrm{~A} \\ & \mathrm{I}_{\mathrm{OH}}=-24 \mathrm{~mA} \end{aligned}$	$\begin{aligned} & \hline 2.3-2.7 \\ & 2.3-2.7 \end{aligned}$	$\begin{gathered} \hline 3.0-3.6 \\ 3.0 \end{gathered}$	$\begin{gathered} \mathrm{V}_{\mathrm{CCB}^{-0.2}} \\ 2.2 \end{gathered}$		V
$\mathrm{V}_{\text {OLA }}$	LOW Level Output Voltage		$\begin{aligned} & \mathrm{l}=100 \mu \mathrm{~A} \\ & \mathrm{loL}=18 \mathrm{~mA} \end{aligned}$	$\begin{gathered} \hline 2.3-2.7 \\ 2.3 \end{gathered}$	$\begin{aligned} & \hline 3.0-3.6 \\ & 3.0-3.6 \end{aligned}$		$\begin{aligned} & 0.2 \\ & 0.6 \end{aligned}$	V
$\mathrm{V}_{\text {OLB }}$	LOW Level Output Voltage		$\begin{aligned} & \mathrm{l} \mathrm{OL}=100 \mu \mathrm{~A} \\ & \mathrm{loL}=24 \mathrm{~mA} \end{aligned}$	$\begin{aligned} & 2.3-2.7 \\ & 2.3-2.7 \end{aligned}$	$\begin{gathered} \hline 3.0-3.6 \\ 3.0 \end{gathered}$		$\begin{gathered} \hline 0.2 \\ 0.55 \end{gathered}$	V
I_{1}	Input Leakage Current @ $\overline{\mathrm{OE}}, \mathrm{T} / \overline{\mathrm{R}}$		$0 \mathrm{~V} \leq \mathrm{V}_{1} \leq 3.6 \mathrm{~V}$	2.3-2.7	3.0-3.6		± 5.0	$\mu \mathrm{A}$
Ioz	3-STATE Output Leakage @ A_{n}		$\begin{aligned} & 0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{O}} \leq 3.6 \mathrm{~V} \\ & \overline{\mathrm{OE}}=\mathrm{V}_{\mathrm{CCA}} \\ & \mathrm{~V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} \end{aligned}$	2.3-2.7	3.0-3.6		± 10	$\mu \mathrm{A}$
ToFF	Power OFF Leakage Curre		$0 \leq\left(\mathrm{V}_{\mathrm{l}}, \mathrm{V}_{\mathrm{O}}\right) \leq 3.6 \mathrm{~V}$	0	0		10	$\mu \mathrm{A}$
$\mathrm{ICCA} / \mathrm{l}$ CCB	Quiescent Supply Current, per supply, $\mathrm{V}_{\mathrm{CCA}} \mathrm{V}_{\mathrm{CCB}}$		$\begin{aligned} & A_{n}=V_{C C A} \text { or GND } \\ & B_{n}, \overline{O E}, \& T / \bar{R}=V_{C C B} \text { or GND } \end{aligned}$	2.3-2.7	3.0-3.6		20	$\mu \mathrm{A}$
			$\begin{aligned} & \mathrm{V}_{\mathrm{CCA}} \leq \mathrm{A}_{\mathrm{n}} \leq 3.6 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CCB}} \leq \mathrm{B}_{\mathrm{n}}, \overline{\mathrm{OE}, \mathrm{~T} / \overline{\mathrm{R}} \leq 3.6 \mathrm{~V}} \end{aligned}$	2.3-2.7	3.0-3.6		± 20	$\mu \mathrm{A}$
$\Delta l_{\text {CC }}$	Increase in $\mathrm{I}_{\text {CC }}$ per Input, $\mathrm{B}_{\mathrm{n}}, \mathrm{T} / \overline{\mathrm{R}}, \overline{\mathrm{OE}}$		$\mathrm{V}_{1}=\mathrm{V}_{\text {CCB }}-0.6 \mathrm{~V}$	2.3-2.7	3.0-3.6		750	$\mu \mathrm{A}$
	Increase in $\mathrm{I}_{\text {CC }}$ per Input, A_{n}		$\mathrm{V}_{1}=\mathrm{V}_{\text {CCA }}-0.6 \mathrm{~V}$	2.3-2.7	3.0-3.6		750	$\mu \mathrm{A}$

AC Electrical Characteristics

Symbol	Parameter	$\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=500 \Omega, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$,						Units
		$\begin{aligned} & \mathrm{V}_{\mathrm{CCA}}=1.65 \mathrm{~V} \text { to } 1.95 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CCB}}=2.3 \mathrm{~V} \text { to } 2.7 \mathrm{~V} \end{aligned}$		$\begin{aligned} & \mathrm{V}_{\mathrm{CCA}}=1.65 \mathrm{~V} \text { to } 1.95 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CCB}}=3.0 \mathrm{~V} \text { to } 3.6 \mathrm{~V} \end{aligned}$		$\begin{aligned} & \mathrm{V}_{\mathrm{CCA}}=2.3 \mathrm{~V} \text { to } 2.7 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CCB}}=3.0 \mathrm{~V} \text { to } 3.6 \mathrm{~V} \end{aligned}$		
		Min	Max	Min	Max	Min	Max	
$\mathrm{t}_{\text {PHL }}, \mathrm{t}_{\text {PLH }}$	Prop Delay, A to B	0.8	5.5	0.6	5.1	0.6	4.0	ns
$\mathrm{t}_{\text {PHL }}, \mathrm{t}_{\text {PLH }}$	Prop Delay, B to A	1.5	5.8	1.5	6.2	0.8	4.4	ns
$\mathrm{t}_{\text {PZL }}, \mathrm{t}_{\text {PZH }}$	Output Enable Time, OE to B	0.8	5.3	0.6	5.1	0.6	4.0	ns
$\mathrm{t}_{\text {PZL }}, \mathrm{t}_{\text {PZH }}$	Output Enable Time, OE to A	1.5	8.3	1.5	8.2	0.8	4.6	ns
$\mathrm{t}_{\text {PLZ }}, \mathrm{t}_{\text {PHZ }}$	Output Disable Time, OE to B	0.8	5.2	0.8	5.6	0.8	4.8	ns
$\mathrm{t}_{\text {PLZ }}, \mathrm{t}_{\text {PHZ }}$	Output Disable Time, OE to A	0.8	4.6	0.8	4.5	0.8	4.4	ns
$\mathrm{t}_{\mathrm{osHL}}$ $\mathrm{t}_{\mathrm{osLH}}$	Output to Output Skew (Note 8)		0.5		0.5		0.75	ns

Note 8: Skew is defined as the absolute value of the difference between the actual propagation delay for any two separate outputs of the same device. The specification applies to any outputs switching in the same direction, either HIGH-to-LOW ($\mathrm{t}_{\mathrm{osHL}}$) or LOW-to-HIGH ($\mathrm{t}_{\mathrm{osLH}}$)

Dynamic Switching Characteristics

Symbol	Parameter	Conditions	$\mathrm{V}_{\text {CCA }}$ (V)	$\mathrm{V}_{\mathrm{CCB}}$ (V)	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	Units
					Typical	
$\mathrm{V}_{\text {OLP }}$	Quiet Output Dynamic Peak $\mathrm{V}_{\text {OL }}$,	$\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}, \mathrm{V}_{\mathrm{IH}}=\mathrm{V}_{\mathrm{CC}}, \mathrm{V}_{\mathrm{IL}}=0 \mathrm{~V}$	1.8	2.5	0.25	V
	B to A		1.8	3.3	0.25	
			2.5	3.3	0.6	
	Quiet Output Dynamic Peak V_{OL},	$\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}, \mathrm{V}_{\mathrm{IH}}=\mathrm{V}_{\mathrm{CC}}, \mathrm{V}_{\mathrm{IL}}=0 \mathrm{~V}$	1.8	2.5	0.6	V
	A to B		1.8	3.3	0.8	
			2.5	3.3	0.8	
$\mathrm{V}_{\text {OLV }}$	Quiet Output Dynamic Valley $\mathrm{V}_{\text {OL }}$,	$\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}, \mathrm{V}_{\mathrm{IH}}=\mathrm{V}_{\mathrm{CC}}, \mathrm{V}_{\mathrm{IL}}=0 \mathrm{~V}$	1.8	2.5	-0.25	V
	B to A		1.8	3.3	-0.25	
			2.5	3.3	-0.6	
	Quiet Output Dynamic Valley $\mathrm{V}_{\text {OL }}$,	$\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}, \mathrm{V}_{\text {IH }}=\mathrm{V}_{\mathrm{CC}}, \mathrm{V}_{\text {IL }}=0 \mathrm{~V}$	1.8	2.5	-0.6	V
	A to B		1.8	3.3	-0.8	
			2.5	3.3	-0.8	
$\mathrm{V}_{\text {OHV }}$	Quiet Output Dynamic Valley V_{OH}, A to B	$\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}, \mathrm{V}_{\mathrm{IH}}=\mathrm{V}_{\mathrm{CC}}, \mathrm{V}_{\mathrm{IL}}=0 \mathrm{~V}$	1.8	2.5	1.7	V
			1.8	3.3	2.0	
			2.5	3.3	2.0	
	Quiet Output Dynamic Valley V_{OH}, B to A	$\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}, \mathrm{V}_{\text {IH }}=\mathrm{V}_{\mathrm{CC}}, \mathrm{V}_{\text {IL }}=0 \mathrm{~V}$	1.8	2.5	1.3	V
			1.8	3.3	1.3	
			2.5	3.3	1.7	

Capacitance

Symbol	Parameter	Conditions	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	Units
			Typical	
$\mathrm{C}_{\text {IN }}$	Input Capacitance	$\mathrm{V}_{\text {CCA }}=2.5 \mathrm{~V}, \mathrm{~V}_{\text {CCB }}=3.3 \mathrm{~V}, \mathrm{~V}_{1}=0 \mathrm{~V}$ or $\mathrm{V}_{\text {CCA }}$	5	pF
$\mathrm{C}_{1 / \mathrm{O}}$	Input/Output Capacitance	$\mathrm{V}_{\text {CCA }}=2.5 \mathrm{~V}, \mathrm{~V}_{\text {CCB }}=3.3 \mathrm{~V}, \mathrm{~V}_{1}=0 \mathrm{~V}$ or $\mathrm{V}_{\text {CCA }}$	6	pF
$\mathrm{C}_{\text {PD }}$	Power Dissipation Capacitance	$\begin{aligned} & V_{C C A}=2.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CCB}}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{I}}=0 \mathrm{~V} \text { or } \mathrm{V}_{\mathrm{CCABB}} \\ & \mathrm{f}=10 \mathrm{MHz} \end{aligned}$	20	pF

AC Loading and Waveforms

FIGURE 3. 3-STATE Output High Enable and Disable Times for Low Voltage Logic $\mathbf{t}_{\mathrm{R}}=\mathrm{t}_{\mathrm{F}} \leq \mathbf{2 . 0} \mathrm{ns}, \mathbf{1 0 \%}$ to $\mathbf{9 0 \%}$

FIGURE 4. 3-STATE Output Low Enable and Disable Times for Low Voltage Logic $\mathrm{t}_{\mathrm{R}}=\mathrm{t}_{\mathrm{F}} \leq \mathbf{2 . 0} \mathrm{ns}, \mathbf{1 0 \%}$ to $\mathbf{9 0 \%}$

Symbol	$\mathrm{V}_{\mathbf{C C}}$		
	$\mathbf{3 . 3 V} \pm \mathbf{0 . 3 V}$	$\mathbf{2 . 5 V} \pm \mathbf{0 . 2 V}$	$\mathbf{1 . 8 V} \pm \mathbf{0 . 1 5 V}$
V_{mi}	1.5 V	$\mathrm{~V}_{\mathrm{CC}} / 2$	$\mathrm{~V}_{\mathrm{CC}} / 2$
$\mathrm{~V}_{\mathrm{mo}}$	1.5 V	$\mathrm{~V}_{\mathrm{CC}} / 2$	$\mathrm{~V}_{\mathrm{CC}} / 2$
$\mathrm{~V}_{\mathrm{X}}$	$\mathrm{V}_{\mathrm{OL}}+0.3 \mathrm{~V}$	$\mathrm{~V}_{\mathrm{OL}}+0.15 \mathrm{~V}$	$\mathrm{~V}_{\mathrm{OL}}+0.15 \mathrm{~V}$
$\mathrm{~V}_{\mathrm{Y}}$	$\mathrm{V}_{\mathrm{OH}}-0.3 \mathrm{~V}$	$\mathrm{~V}_{\mathrm{OH}}-0.15 \mathrm{~V}$	$\mathrm{~V}_{\mathrm{OH}}-0.15 \mathrm{~V}$

Physical Dimensions inches (millimeters) unless otherwise noted

NOTES:
A. THIS PACKAGE CONFORMS TO JEDEC M0-205
B. ALL DIMENSIONS IN MILLIMETERS
C. LAND PATTERN RECOMMENDATION: NSMD (Non Solder Mask Defined)

35MM DIA PADS WITH A SOLDERMASK OPENING OF .45MM CONCENTRIC TO PADS D. DRAWING CONFORMS TO ASME Y14.5M-1994

BGA54ArevD
54-Ball Fine-Pitch Ball Grid Array (FBGA), JEDEC MO-205, 5.5mm Wide
Package Number BGA54A

Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

DIMENSIONS ARE IN MILLIMETERS

NOTES:
A. CONFORMS TO JEDEC REGISTRATION MO-153, VARIATION AB, REF NOTE 6, DATE 7/93.
B. DIMENSIONS ARE IN MILIMETERS.
C. DIMENSIONS ARE EXCLUSIVE OF BURRS, MOLD FLASH, AND TIE BAR EXTRUSIONS.
D. DIMENSIONS AND TOLERANCES PER ANSI Y14.5M, 1982

MTD48RevB1

DETAIL A
48-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 6.1mm Wide Package Number MTD48

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.
LIFE SUPPORT POLICY
FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.
www.fairchildsemi.com
